

High-performance liquid chromatographic determination of seratrodast and its metabolites in human serum and urine

Ryuichi Ohta^{a,*}, Toshio Amano^b, Kenji Yamashita^a, Michio Motohashi^a

^aDrug Analysis & Pharmacokinetics Research Laboratories, Takeda Chemical Industries, Ltd., Juso-Honmachi, Yodogawa-ku, Osaka 532, Japan

^bTakeda Analytical Research Laboratories, Ltd., Juso-Honmachi, Yodogawa-ku, Osaka 532, Japan

Received 6 June 1997; received in revised form 25 July 1997; accepted 21 August 1997

Abstract

A high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of seratrodast, a new antiasthmatic drug, and its metabolites (M-I to M-III) in human serum and urine. The method for serum and urine with and without enzymatic hydrolysis using β -glucuronidase involved liquid–liquid extraction and chemical oxidation with iron(III) chloride. The compounds in the extract were analyzed using HPLC with UV detection at 266 nm. The detection limits of seratrodast, M-I, M-II and M-III in serum and urine were 5–10 and 5–20 ng/ml, respectively, and those of deconjugated compounds in urine were 10–50 ng/ml. The method was applicable for human serum and urine from clinical trials. © 1997 Elsevier Science B.V.

Keywords: Seratrodast

1. Introduction

Seratrodast ((\pm)-7-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)-7-phenylheptanoic acid) (Fig. 1), a novel, long-acting, potent thromboxane A₂/prostaglandin endoperoxide receptor antagonist, is now commercially available as an antiasthmatic drug [1–12]. To characterize the clinical pharmacokinetics, an analytical method for seratrodast and its metabolites in biological fluids was required. In this paper, we describe a high-performance liquid chromatographic (HPLC) method for the simultaneous determination

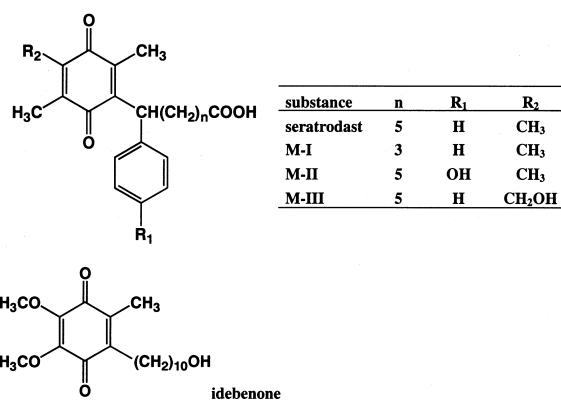


Fig. 1. Structures of seratrodast, metabolites (M-I to M-III) and idebenone (I.S.).

*Corresponding author.

of seratrodast and its metabolites (M-I to M-III) in human serum and urine.

2. Experimental

2.1. Reagents and materials

Seratrodast, its metabolites (M-I to M-III) and idebenone (Fig. 1) used as an internal standard (I.S.) were all synthesized in the Pharmaceutical Research Division, Takeda Chemical Industries (Osaka, Japan). Acetonitrile and ethyl acetate were of HPLC grade (Wako, Osaka, Japan). β -Glucuronidase (type B-3, H-1 and IX) and sulfatase (type VIII) were obtained from Sigma (St. Louis, MO, USA). All other reagents were of analytical-reagent grade (Wako) and were used without further purification. I.S. was dissolved in ethyl acetate to obtain an I.S. solution (0.167 μ g/ml). Enzyme solutions (667 U/ml for β -glucuronidase and 33.3 U/ml for sulfatase) were prepared by dissolving each enzyme in 0.2 M phosphate buffer (pH 5.0). Phosphate buffer was prepared by mixing potassium dihydrogenphosphate and disodium hydrogenphosphate solution to obtain the required pH. Iron(III) chloride solution was prepared by dissolving $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ in water (1 mg/ml). Propylene glycol solution was prepared by dissolving propylene glycol in ethyl acetate (5%, w/v).

2.2. Instruments and conditions

The HPLC system consisted of an SCL-6A controller, two LC-6A pumps, a CTO-6A column oven, an SIL-6A autoinjector, an SPD-6A UV detector, a C-R3A integrator (all from Shimadzu, Kyoto, Japan) and a U-228 recorder (Nippon Densi Kagaku, Kyoto, Japan). The column was YMC Pack ODS (A-302, 5 μ m particle size, 150 \times 4.6 mm I.D.; YMC, Kyoto, Japan). The mobile phase A (MP(A)) was 0.05 M potassium dihydrogenphosphate for serum and 0.05 M phosphate buffer (pH 3.0) for urine. The mobile phase B (MP(B)) was acetonitrile–0.05 M potassium dihydrogenphosphate (6:4, v/v) for serum and acetonitrile–0.05 M phosphate buffer (pH 3.0) for urine (6:4, v/v). A gradient elution was performed, the time program for which was as follows:

the concentration of MP(B) was linearly increased from 50 to 100% over a period of 50 min. The MP(B) concentration was held at 100% for 5 min and cycled back to the initial condition (50%) in 5 min. The system was equilibrated at the initial mobile phase composition for 15 min before injecting the next sample. The analysis time was 75 min. The temperature of the column was 25°C for serum and 40°C for urine. The flow-rate was 1.0 ml/min. Detection was carried out at UV 266 nm.

2.3. Extraction procedure and time program for HPLC

The samples were handled using brown containers to avoid light-induced decomposition [13].

2.3.1. Serum

To 500 μ l of serum was added 150 μ l of 0.1 M hydrochloric acid and the mixture was extracted with 6 ml of I.S. solution. After the centrifugation, propylene glycol in ethyl acetate (200 μ l) was added to the organic layer and evaporated to dryness under a stream of nitrogen at 40°C. Iron(III) chloride solution (2 ml) was added to the residue and vortexed for 10 s. The solution was extracted with 4 ml of ethyl acetate, and propylene glycol solution (200 μ l) was added to the separated organic layer and evaporated to dryness under a stream of nitrogen at 40°C. The residue was dissolved in 300 μ l of a mixture of acetonitrile and 0.05 M potassium dihydrogenphosphate (11:9, v/v) and an aliquot of 100 μ l was injected into the HPLC system.

2.3.2. Urine

Urine (500 μ l) was extracted with 6 ml of I.S. solution. After the centrifugation, propylene glycol solution (200 μ l) was added to the organic layer and evaporated to dryness under a stream of nitrogen at 40°C. Iron(III) chloride solution (2 ml) was added to the residue and vortexed for 10 s. The solution was extracted with 4 ml of ethyl acetate, and propylene glycol solution (200 μ l) was added to the separated organic layer and evaporated to dryness under a stream of nitrogen at 40°C. The residue was dissolved in 300 μ l of a mixture of acetonitrile and 0.05 M phosphate buffer, pH 3.0 (11:9, v/v), and an

Table 1

Comparison of concentration of seratrodast and M-III in urine by enzymatic hydrolysis (ng/ml)

Analyte	Before hydrolysis	Sulfatase (type VIII)	β -D-Glucuronidase (type B-3)	β -D-Glucuronidase (type H-1)	β -D-Glucuronidase (type IX)
Seratrodast	87	290	550	520	470
M-III	nd	68	190	180	190

Incubated for 18 h at 37°C (sulfatase 25 U/0.5 ml urine, β -D-glucuronidase 500 U/0.25 ml urine). nd, not detected.

aliquot of 100 μ l was injected into the HPLC system.

2.3.3. Urine after enzymatic hydrolysis

To 250 μ l of urine was added 750 μ l of the enzyme solution (β -glucuronidase, type B-3). The mixture was incubated for 1 h at 37°C, and extracted with 6 ml of I.S. solution. After the centrifugation, propylene glycol solution (200 μ l) was added to the organic layer and evaporated to dryness under a stream of nitrogen at 40°C. Iron(III) chloride solution (2 ml) was added to the residue and vortexed for 10 s. The solution was extracted with 4 ml of ethyl

acetate, and propylene glycol solution (200 μ l) was added to the separated organic layer and evaporated to dryness under a stream of nitrogen at 40°C. The residue was dissolved in 300 μ l of a mixture of acetonitrile and 0.05 M phosphate buffer, pH 3.0 (11:9, v/v), and an aliquot of 100 μ l was injected into the HPLC system.

2.4. Validation

Drug-free serum or urine spiked with known amounts of seratrodast, its metabolites and their reduced products which were prepared with sodium

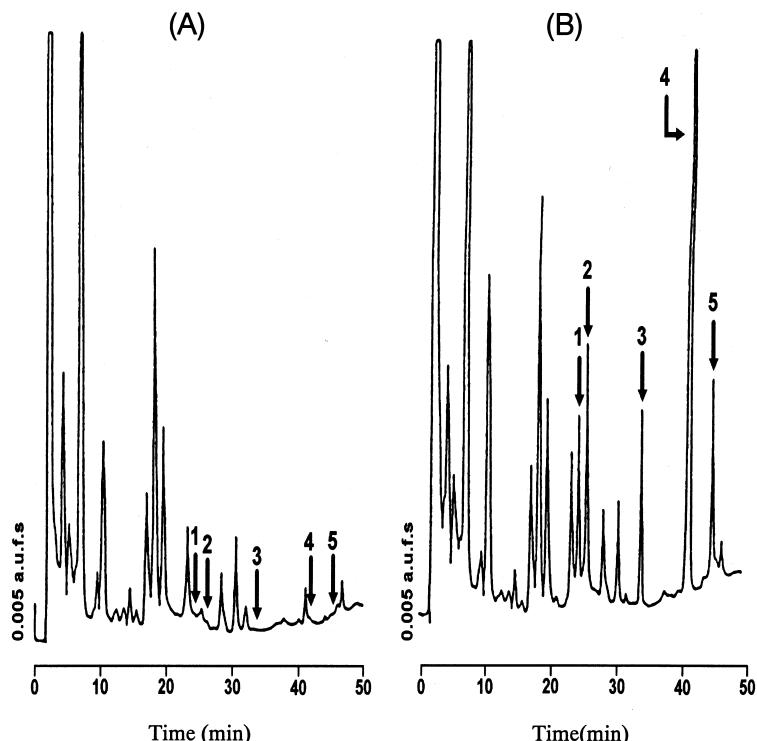


Fig. 2. Chromatograms of (A) drug-free serum and (B) serum spiked with seratrodast and its metabolites (200 ng/ml each). The arrows show the retention times of the compounds: 1, M-III; 2, M-II; 3, M-I; 4, I.S.; 5, seratrodast.

borotetrahydrate in ethanol solution (0.04%, w/v) were analyzed according to the respective analytical methods described above.

Peak-height ratios of each compound to I.S. were plotted against the respective concentrations to give the calibration graphs. The percentage recoveries of extraction for each compound from serum or urine were calculated from the peak-height ratios of spiked samples relative to directly injected standard solutions. Precision and accuracy were assessed by back-calculating the concentrations of the analyte from the peak-height ratio in the calibration graph of the spiked samples.

3. Results and discussion

The pharmacokinetic studies of seratrodast [14,15] demonstrate the possibility for hydroquinone and quinone forms of seratrodast and its metabolites to

exist in serum and urine. They are supposed to be in equilibrium. Because determination of seratrodast and its metabolites as hydroquinone forms is difficult, the analytes were oxidized to measure as corresponding quinone forms.

To analyze all of these compounds simultaneously, liquid–liquid extraction, oxidation with iron(III) chloride, and HPLC with gradient elution were appropriate. As a clean-up procedure, liquid–liquid extraction with ethyl acetate at lower than pH 7 was required for the simultaneous extraction of all the analytes. Iron(III) chloride was selected to avoid interference to chromatograms and prevent M-II (containing phenolic group) oxidation [16].

A preliminary study using urine (0–5 h sample from a volunteer who ingested 20 mg seratrodast in clinical trials) showed the existence of conjugated seratrodast and M-III in urine. Therefore, the conditions of enzymatic or acid hydrolysis were optimized using the urine sample by the various conditions such as hydrolyzing reagents, concentrations

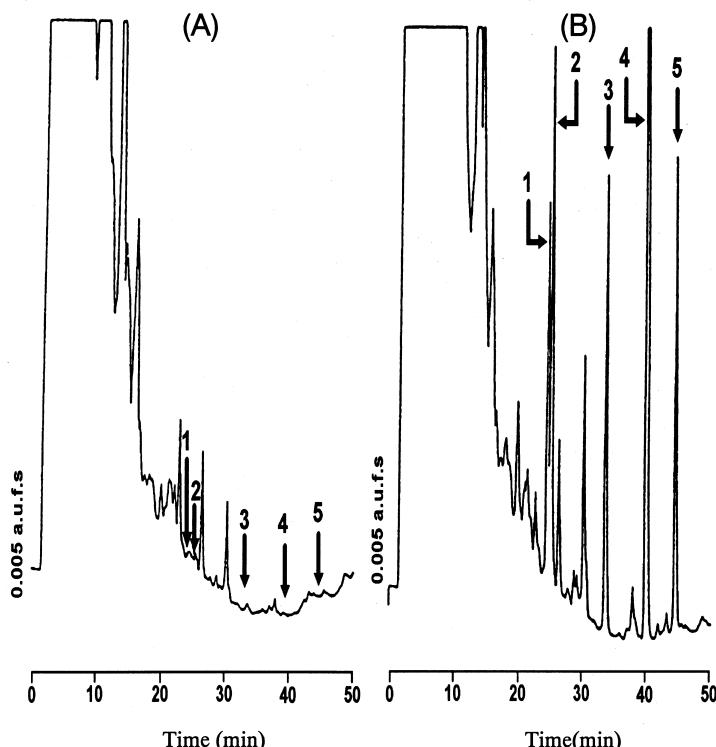


Fig. 3. Chromatograms of (A) drug-free urine and (B) urine spiked with seratrodast and its metabolites (200 ng/ml each). The arrows show the retention times of the compounds: 1, M-III; 2, M-II; 3, M-I; 4, I.S.; 5, seratrodast.

of the agent and incubation time. Of these reagents, hydrochloric acid was excluded because of interferences on chromatograms. Considering the amount of seratrodast and M-III deconjugated (Table 1), type B-3 β -D-glucuronidase was adopted. The incubation with this enzyme (500 U/0.25 ml urine) for 1–24 h at 37°C gave almost equal concentrations of unconjugated seratrodast and M-III. Therefore, the enzyme concentration of 500 U/0.25 ml urine with an incubation time of 1 h at 37°C was adopted as the conditions for enzymatic hydrolysis.

The gradient time program was optimized for serum and urine samples, separately. Figs. 2–4 show the chromatograms with minimum interferences at the retention time of each compound.

Table 2 shows the comparison of preliminary intra-day variation for oxidized and reduced forms of seratrodast and its metabolites in serum and urine. There were no differences with results between the sample spiked with oxidized or reduced forms at two concentrations. Therefore, reduced forms of seratrod-

ast and its metabolites were utilized for intra-day and inter-day validation.

The calibration graphs were obtained by analyzing spiked serum and urine samples. The least-squares regression fit showed good linearity, passing through the origin (correlation coefficient >0.9999) for each compound in serum, urine and hydrolyzed urine, up to 4, 1, and 4 μ g/ml, respectively. The extraction recoveries for the compounds from serum or urine were all above 89%. The intra- and inter-assay data for accuracy and precision are presented in Table 3. On the basis of a signal-to-noise ratio of 3 and the existence of a small amount of interferences at the retention time of each compound, the detection limits for seratrodast, M-I, M-II, and M-III were concluded to be 5, 5, 5 and 10 ng/ml in serum, 5, 10, 10 and 20 ng/ml in urine and 10, 30, 50 and 50 ng/ml in urine after enzymatic hydrolysis. Seratrodast and its metabolites were all stable in serum and urine for at least 2 months at -20°C (Table 4).

The described method was applied to the de-

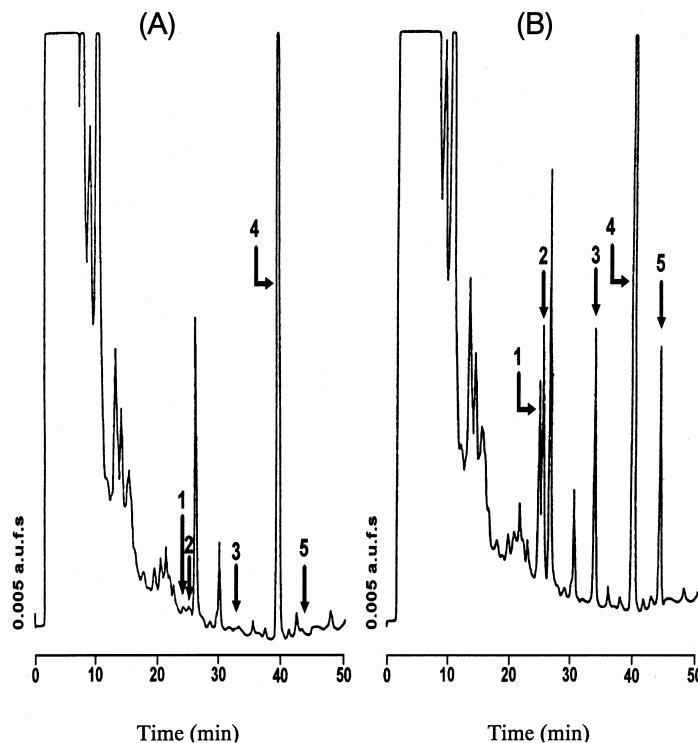


Fig. 4. Chromatograms of (A) drug-free urine and (B) urine treated with β -glucuronidase after being spiked with seratrodast and its metabolites (200 ng/ml each). The arrows show the retention times of the compounds; 1, M-III; 2, M-II; 3, M-I; 4, I.S.; 5, seratrodast.

Table 2

Comparison of intra-day variation of seratrodast and its metabolites to their reduced compounds in serum and urine (n=3)

Compound	Added (ng/ml)	Oxidized form			Reduced form		
		Mean found	C.V. (%)	Bias (%)	Mean found	C.V. (%)	Bias (%)
<i>Serum</i>							
Seratrodast	50	47.0	0.6	−6.0	47.8	0.6	−4.4
	500	459.0	1.4	−8.2	516.5	4.5	3.3
M-I	50	49.4	1.6	−1.2	49.8	0.7	−0.4
	500	515.5	1.2	3.1	549.0	2.8	9.8
M-II	50	47.6	0.5	−4.8	46.2	1.2	−7.6
	500	518.5	1.3	3.7	544.5	2.6	8.9
M-III	50	50.0	0.9	0.0	48.8	0.4	−2.4
	500	528.0	0.7	5.6	551.0	2.5	10.2
<i>Urine</i>							
Seratrodast	50	48.0	4.2	−4.0	47.9	2.4	−4.2
	500	495.5	2.1	−0.9	494.5	0.8	−1.1
M-I	50	50.0	2.8	0.0	50.1	0.8	0.2
	500	508.5	0.7	1.7	508.0	0.8	1.6
M-II	50	49.5	2.9	−1.0	50.2	0.3	0.4
	500	505.0	1.2	1.0	505.5	1.1	1.0
M-III	50	49.6	2.7	−0.8	49.9	0.8	−0.2
	500	503.0	1.1	0.6	505.5	1.0	1.1

termination of seratrodast and its metabolites in human serum and urine. Fig. 5 shows the mean concentrations of seratrodast and its metabolites in serum samples from three volunteers who ingested 20 mg of seratrodast. An increase in the concentration of each compound in serum was hardly

observed after enzymatic hydrolysis under the conditions described for urine. In these volunteers, 5–15% of the dose was excreted in urine within 48 h, mostly as conjugates. The pharmacokinetic profiles in clinical trials using this method were reported elsewhere [17].

Table 3

Accuracy and precision data for seratrodast and its metabolites, added to human serum and urine

Compound	Concentration (ng/ml)	Intra-assay (n=5)				Inter-assay (n=3)			
		Added	Mean found	C.V. (%)	Bias (%)	Added	Mean found	C.V. (%)	Bias (%)
<i>Serum</i>									
Seratrodast	200	190.4	2.9	−4.9	160	154.2	5.5	−3.6	
M-I	200	203.6	4.8	1.8	160	159.7	6.5	−0.2	
M-II	200	202.3	4.0	1.2	160	157.9	8.5	−1.3	
M-III	200	203.6	2.2	1.8	160	156.5	6.6	−2.2	
<i>Urine</i>									
Seratrodast	200	194.0	0.8	−3.0	160	155.0	2.8	−3.1 ^a	
M-I	200	197.4	0.9	−1.3	160	161.8	0.3	1.1 ^a	
M-II	200	197.9	2.8	−1.1	160	160.0	1.6	0.0 ^a	
M-III	200	199.3	5.6	−0.3	160	163.8	2.6	2.4 ^a	
<i>Urine after enzymatic hydrolysis</i>									
Seratrodast	1000	950	2.1	−5.0	320	318.4	4.5	−0.5	
M-I	1000	990	1.1	−1.0	320	324.5	4.8	1.4	
M-II	1000	1019	1.8	1.9	320	335.0	2.2	4.7	
M-III	1000	1025	1.3	2.5	320	322.2	2.8	0.7	

^an=2.

Table 4

Stability of seratrodast and its metabolites in human serum and urine stored at -20°C for 1 and 2 months

Compound	Added concentration (ng/ml)	Residual content (%)			
		Serum		Urine	
		1 month	2 months	1 month	2 months
Seratrodast	500	100.4	100.5	96.5	94.6
M-I	120	107.0	101.4	97.2	95.0
M-II	120	106.9	97.4	96.4	91.4
M-III	120	99.0	85.7	95.8	95.4

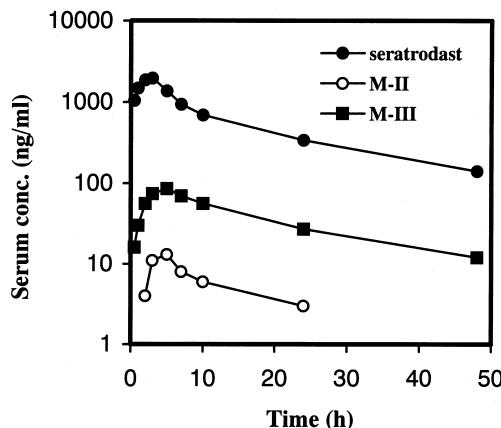


Fig. 5. Mean serum levels of seratrodast and its metabolites in three volunteers after oral administration of 20 mg of seratrodast.

References

- [1] M. Shiraishi, K. Kato, S. Terao, Y. Ashida, Z. Terakita, G. Kito, *J. Med. Chem.* 32 (1989) 2214.
- [2] S. Terao, *Adv. Prostaglandin Thromboxane Leukotriene Res.* 19 (1989) 651.
- [3] T. Kurokawa, T. Matsumoto, Y. Ashida, R. Sasada, S. Iwasa, *Biol. Pharm. Bull.* 17(3) (1994) 383.
- [4] T. Matsumoto, Y. Ashida, H. Kuriki, *Jpn. J. Pharmacol.* 49(S) (1989) 220.
- [5] Y. Ashida, H. Kuriki, Y. Maki, M. Shiraishi, S. Terao, *Jpn. J. Pharmacol.* 46(Suppl) (1988) 137.
- [6] S. Terao, *Med. Immunol.* 16(5) (1988) 637.
- [7] Y. Imura, Z. Terashita, Y. Shibouta, Y. Inada, K. Nishikawa, *Jpn. J. Pharmacol.* 52(1) (1990) 35.
- [8] Y. Ikeda, K. Nishijima, N. Tokai, K. Nishi, *J. Pharm. Soc. Jpn.* 115 (1995) 937.
- [9] T. Matsumoto, Y. Ashida, R. Tsukuda, *J. Pharmacol. Exp. Ther.* 269(3) (1994) 1236.
- [10] T. Kurokawa, T. Matsumoto, Y. Ashida, R. Sasada, S. Iwasa, *Jpn. Pharmacol. Ther.* 21(12) (1993) 4539.
- [11] T. Matsumoto, Y. Ashida, *Prostaglandins* 46 (1993) 301.
- [12] Y. Ashida, T. Matsumoto, H. Kuriki, M. Shiraishi, K. Kato, S. Terao, *Prostaglandins* 38 (1989) 91.
- [13] S. Miyake, K. Nishijima, Unpublished data.
- [14] T. Kondo, N. Nishi, K. Miwa, T. Imamoto, K. Hagihara, M. Ikeda, Y. Yanaga, K. Yoshida, Y. Yoshimura, S. Tanayama, *Jpn. Pharmacol. Ther.* 21(Suppl. 7) (1993) 229.
- [15] K. Miwa, T. Imamoto, M. Ikeda, K. Hagihara, Y. Yanaga, K. Yoshida, Y. Yoshimura, S. Tanayama, *Jpn. Pharmacol. Ther.* 21(Suppl. 7) (1993) 201.
- [16] L.F. Fieser, M. Fieser, *Reagent for Organic Synthesis*, John Wiley and Sons, New York, 1969, p. 940.
- [17] M. Shimizu, T. Teranishi, S. Negoro, S. Kishimoto, *Clin. Pharmacol.* 9(Suppl. 8) (1993) 3.